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Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow
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We develop a theory to describe the reorientation phenomena in the lamellar phase of block copolymer melts
under reciprocating shear flow. We show that, similar to the steady shear, the oscillating flow anisotropically
suppresses fluctuations and gives rise to|thel transition. The experimentally observed high-frequency
reverse transition is explained in terms of interaction between the melt and the shear-cell walls.
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The behavior of the lamellar phase striped pattemof 7 is a temperature-controlling parametes,* is an intrinsic
block copolymer melts under oscillatory shear flow has atiength scale of the block-copolymer melt arising from the
tracted attention of numerous experimental studiBs€l. interplay of interactions and the chain connectivjiyjs an
Shear flow is known to influence the order-disorder trans't'orbnsager coefficient that is approximated fay= (kg) and
(ODT) temperature and the orientation of the lamellae Withassumed to be frequency independdrt—13. The last term
respect to the shear geometry. Thus, in the vicinity of ODT at Eq. (1) describes a coupling between the shear flow

low frequencies the lamellae orient with their normal paraIIeI:Aw coswtye, and the gradient of the order parameter. Here
to the shear gradientthe parallel orientation while at we assume that this form of flow is valid for all and A.

higher frequencies their normal is perpendicular to the veloc- : .
ity and the gradient directionghe perpendicular orienta- . 1he Fokker-Planck equatiofi) generates the equations
tion). Further increase of frequency results in reappearancl’ the amplitude of the average order-parameter profile
of the parallel orientatiofi5]. Here, we propose an explana- {$k) =a( 8k k,n+ 9, —k,n) oriented along the unit vectar,
tion of this orientation behavior that is usually referred to as 1 \
a double-flip phenomena. a 3

Earlier theories, which deal with steady shear, emphasize noat —r(n)a+§(1—/3)a : )
the role of compositional fluctuatio¥—9]. The stable ori-
entation is seen as a result of interaction between the sheand for the structure fact@®(k) =(dxd_x) —(Pr){P k).
flow and the fluctuation spectra. In equilibrium, fluctuations 1 oSk A IS(K)
destroy the long-range correlations and, therefore, lower the @ 1
ODT temperature with respect to its mean-field value. Impo- 2, ot  2u coswtky dk, +S(k)S(k)o "=1, (4)
sition of shear breaks the rotational symmetry and anisotrop-
ically suppresses fluctuations. The direction of the strongeswvhere
suppression will have the highest ODT temperature and the R
corresponding orientation of lamellae will be selected. We Sgl(k)=r(k)+(k—k0)2, (5)
will show that the selected orientation depends on the ampli-
tude and frequency of the flow. We base our analysis on the r(R)Er_ﬁ.‘é. K=+ )\32(1_5(”. R)2)+0(R),
Fokker-Planck equation for the probability densify¢],

~ A dq Aoa
oP (s 5  SH[¢] a<k)=—f S(q)[1-B(k-a)?].
E[‘ﬁ"]‘fkaﬁ “<5¢_k+ 5¢_k> 2J @my?
9 The interaction[14] between fluctuations\ (k, —k,q, —q)
~Aw coswtky— — ¢y |PLS,1]. (1) =\[1-pB(k-d)?], with k=k/k, renormalizes the tempera-
y

) _ i ) turer (k) and makes it anisotropic in the presence of shear.
Here ¢, is a fluctuating scalar field described by the Bra-  The stability criterion for an orientation is derived from
zovskii Hamiltonian[10] Eq. (3). It has a potential formva/dt=—(u/2)od(a)/da,
H[¢]:§fk[7+(k_ko)z]¢k¢—k 1 .
(I)(a,n)=—Z)\a4(1—,8)+2f da’r(n)a’. (6)
0

1
+ EJ f f f A(Kq,K2 K3 Ka) i, Pi, P, Pi, o
kg Jko Jkg S kg Generally, the potentiab is time dependent. In steady state,
(2)  however, it oscillates around some average value. In order to

simplify our analysis we coarse grain the time scale with the
period of oscillations and consider the time-independent ver-

*Email address: morozov@lorentz.leidenuniv.nl sion of Egs. (5), (6) with o(k,t) replaced by o(k)
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=(w/27) & dto(k,t). In this model, the minimum of 1\ e

®(a,n) determines the stable orientatiptb]. The potential I 6 3 J2

® can be viewed as a dynamical extension of the equilibrium C1=— 5 CzZW-
aw

free energy. Together with the solution of E¢),

This regime no longer resembles the equilibrium state. In-
' @) deed, in equilibrium[10] as well as under low-amplitude
shear the spinodal temperature, given f{y)|,-o=0, is
suppressed by fluctuations ta= —o0. Unlikely, from Eg.
(9) 75(n)=—0(n) asymptotically approaches zero @s
—o, We conclude that the flow strongly suppresses fluctua-
tions and restores the mean-field behavior. We also see that
75(n,)>7¢(ny) and, therefore, we expect the perpendicular
orientation to appear below the spinodal. Analysis of the po-

t t
S(k,t)=zﬂfod7exp[—2ﬂf dsS *(k(s))

K(s)=[ky,ky+ Ak, (sinwt—sinws),k,],

it allows us to construct the orientational phase diagram.
First we consider the low-amplitude she&<¢1). In this
case we expand the exponent in E@) up to O(A?) and

obtain tential ® shows that this orientation will persist for lower
temperatures.
— 37B [ Aw|a®\ 2 ns The transition from the parallel to perpendicular orienta-
o(n)=01— 56 | 2] (712 ny+ >3 w<l, tions can be located with the help of the method from Ref.
[16]. We interpolates in between theA—0 andA—c re-
2 2 gimes and solve the equatian(ny)=74(n,) to obtain the
= 2mB N[ 5 M transition line in theA— w plane
O'(n)—O'Z—EA m ny+§ , w>1, (8)

Ao~10uki~N73, w<1, 9)
where a=k3/(47), w=w/(2u), and 0,0, absorb the
orientation-independent terms. In the low-amplitude regime, . . .
the fluctuation spectra is only slightly influenced by shearWhereN IS a nunE)er of monomers in a polymer chain. For
flow. Equationg8) show that this regime is a perturbation of high frequencieso is independent of» and we predict the
the equilibrium state Witho = 0. When the frequency is transition line to be given byA=const. Recent experimental

low, the typical time of the critical fluctuation development is WOrK [5] argues that at low frequengiles the transition be-
1 tween the orientations occurs At~ ™ *, while at higher

; = _1 i - . e . . . .
lmtuchﬂsh(zrtetr_ thary _(Aw)At h?”ﬁ ;he flow _S|mptl%/ tr?fnst_ frequencies the transition line starts to level off. This is in a
ates fluctuations in space. igh frequencies, the lifetimg, agreement with our predictions.

of the critical fluctuations exceeds the characteristic time o Finally, we want to discuss the reappearance of the paral-

the ﬂo‘a" I?ov;/.ever,llsm.ce the amphtléde O.f deforrr:at|9n'l|s|e| orientation at high frequencies. This behavior cannot arise
tsmt?] ' UC.II.JS 10ns live |_:_1han ‘:‘r\]’ erage ?_nwrofnmen ’ ‘T’;m' Arom the flow—fluctuation interaction discussed above. Some
0 ¢ de equ(ljl r|utr;]1 ofne. en ehprr(])per |hes 0 b € meT CaN3uthors argue that the assumption of slow flow in 89.is

not depend on theé frequency, which 1S shown y.ﬂ"' 0 esponsible for the failure of the theory to predict the parallel
determine the stable orientation we follow Fredrickson an rientation at high frequencids,17]. We, however, support
note that the fluctuation integral is smaller for the parallel 5 different opinion. Balsarat aI., noticed,[18] that in equi-
orientation f,=1). The fluctuations are weaker in this di- |iprium the walls of shear cell induce the parallel alignment
rection and, therefore, we predict the parallel orientation tGhrough the whole 0.5-mm sample, while Lausral. ob-

be stable in the low-amplitude regime. ~ served[19] that under shear there is always a near-surface
For the finite-amplitude shear, the fluctuation integral layer of the parallel lamellae independent of the bulk orien-
can be evaluated with the help of E@) neark,~0, tation. Therefore, we propose that the high-frequency paral-

lel orientation of the lamellae is caused by interactions of the
shear-cell walls with the melt. Fredrickson has shd®&@]

, o<l that in equilibrium this interaction will lead to the parallel
alignment. Recently we discussed this effect for a steady
shear{16] and showed that in the presence of this interaction

_ P 2 2
Aw 1 7(2ny+3nz)

1/3]
E<n>=cl<ax)2’3(—*)

- A, 5 2, € 5 5 the stable orientation is given by the minimum ®f =&
o(n)=c; ) In“e—7"—p 4”y'”g+nz 16— —2nas, 1, where is proportional to the Flory-Huggins
strength of interaction between the walls and melt. Minimi-
, € zation of the modified potentiab’ gives for thel — | tran-
+In &/ [ w>1, sition temperature
32,/3A%3 = [a(ny)—o(ny)]*
D*—/J,)\\/Z, A*—)\\/Z, E—W, 71 U(ny) 87]27\(1—[‘3) ’ (10)
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effective shear raté/=Aw. The high-frequency part of the
diagram fundamentally differs from the steady shear. When
the frequency exceeds some critical value, which is of order
of the relaxation time for the critical fluctuations, the further
increase of frequency does not change the behavior of the

system. Therefore, in the high-frequency IirEi([n) together
with the spinodal temperature,(n) appears to be indepen-
dent of .

The first transition from the parallel to perpendicular ori-
entation corresponds to a change in character of the flow—
fluctuation interaction. This change is associated with a
strong suppression of fluctuation and a crossover from the
fluctuation to mean-field type of behavior. Our estimate for
the critical effective shear ratgEq. (9)] shows that[11—
13,16 y.~N~3. WhenN— o, the fluctuation region disap-
pears[10] and y,—0.

To explain the second transition we make use of recent
experiment$18,19 and argue that the high-frequency paral-
lel orientation is stabilized by the preferable interaction of
the shear-cell walls with one of the components of the melt.

A=const,w>1 with coefficients depending on. This is in - . . . )
a qualitative agreement with experiments]. A detailed \s/tﬂgg of this hypothesis requires further experimental

comparison is impossible because of the lack of experimen- At the end we want to emphasize that the presented pic-

tal data. Our assumption can be verified by performing mea; i applicable for any systefpolymers, surfactants, mi-

surement in various material shear cells. ; X . S
. . ; . : croemulsionsdescribed by the Brazovskii Hamiltonidkq.
We summarize our results in an orientational diagram

(Fig. 1. The low-frequency regime resembles the stead)fz)]'
shear behavior. The corresponding expressionssf@EQs. The authors are grateful to Boele Braaksma for his help
(8), (9)] are similar to those for the steady shg&®] with an  with elliptic and hypergeometric functions.

~

—

fluctuations

@

FIG. 1. Orientational diagram. In each region the dominating
effect is stated.

with o(n) from Eq.(9). If we fix temperature, the line of the
second transition will be again given By~ !, w<1 and
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