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Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow
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We develop a theory to describe the reorientation phenomena in the lamellar phase of block copolymer melts
under reciprocating shear flow. We show that, similar to the steady shear, the oscillating flow anisotropically
suppresses fluctuations and gives rise to thei→' transition. The experimentally observed high-frequency
reverse transition is explained in terms of interaction between the melt and the shear-cell walls.
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The behavior of the lamellar phase~a striped pattern! of
block copolymer melts under oscillatory shear flow has
tracted attention of numerous experimental studies@1–6#.
Shear flow is known to influence the order-disorder transit
~ODT! temperature and the orientation of the lamellae w
respect to the shear geometry. Thus, in the vicinity of ODT
low frequencies the lamellae orient with their normal para
to the shear gradient~the parallel orientation!, while at
higher frequencies their normal is perpendicular to the ve
ity and the gradient directions~the perpendicular orienta
tion!. Further increase of frequency results in reappeara
of the parallel orientation@5#. Here, we propose an explan
tion of this orientation behavior that is usually referred to
a double-flip phenomena.

Earlier theories, which deal with steady shear, empha
the role of compositional fluctuations@7–9#. The stable ori-
entation is seen as a result of interaction between the s
flow and the fluctuation spectra. In equilibrium, fluctuatio
destroy the long-range correlations and, therefore, lower
ODT temperature with respect to its mean-field value. Im
sition of shear breaks the rotational symmetry and anisot
ically suppresses fluctuations. The direction of the strong
suppression will have the highest ODT temperature and
corresponding orientation of lamellae will be selected.
will show that the selected orientation depends on the am
tude and frequency of the flow. We base our analysis on
Fokker-Planck equation for the probability densityP@f#,
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Here fk is a fluctuating scalar field described by the Br
zovskii Hamiltonian@10#
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t is a temperature-controlling parameter,k0
21 is an intrinsic

length scale of the block-copolymer melt arising from t
interplay of interactions and the chain connectivity,m is an
Onsager coefficient that is approximated bym5m(k0) and
assumed to be frequency independent@11–13#. The last term
in Eq. ~1! describes a coupling between the shear flowv
5Av cosvtyex and the gradient of the order parameter. He
we assume that this form of flow is valid for allv andA.

The Fokker-Planck equation~1! generates the equation
for the amplitude of the average order-parameter pro
^fk&5a(dk,k0n1dk,2k0n) oriented along the unit vectorn,

1

m

]a

]t
52r ~n!a1

l

2
~12b!a3, ~3!

and for the structure factorS(k)5^fkf2k&2^fk&^f2k&,

1

2m

]S~k!

]t
2

Av

2m
cosvtkx

]S~k!

]ky
1S~k!S~k!0

2151, ~4!

where

S0
21~k!5r ~ k̂!1~k2k0!2, ~5!

r ~ k̂![r 2 k̂•eI• k̂5t1la2~12b~n• k̂!2!1s~ k̂!,

s~ k̂!5
l

2E dq

~2p!3
S~q!@12b~ k̂•q̂!2#.

The interaction@14# between fluctuationsl(k,2k,q,2q)
5l@12b( k̂•q̂)2#, with k̂5k/k, renormalizes the tempera
ture r ( k̂) and makes it anisotropic in the presence of she

The stability criterion for an orientation is derived from
Eq. ~3!. It has a potential form]a/]t52(m/2)]F(a)/]a,
with

F~a,n!52
1

4
la4~12b!12E

0

a

da8r ~n!a8. ~6!

Generally, the potentialF is time dependent. In steady stat
however, it oscillates around some average value. In orde
simplify our analysis we coarse grain the time scale with
period of oscillations and consider the time-independent v
sion of Eqs. ~5!, ~6! with s( k̂,t) replaced by s̄( k̂)
©2002 The American Physical Society03-1
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5(v/2p)*0
2p/vdts( k̂,t). In this model, the minimum of

F(a,n) determines the stable orientation@15#. The potential
F can be viewed as a dynamical extension of the equilibri
free energy. Together with the solution of Eq.~4!,

S~k,t !52mE
0

t

dt expF22mE
t

t

dsS0
21

„k~s!…G , ~7!

k~s!5@kx ,ky1Akx~sinvt2sinvs!,kz#,

it allows us to construct the orientational phase diagram.
First we consider the low-amplitude shear (A!1). In this

case we expand the exponent in Eq.~7! up to O(A2) and
obtain

s̄~n!5s12
3pb

56 S AÃ

2m D 2a2l

r 7/2 S ny
21

nz
2

3 D , Ã!1,

s̄~n!5s22
2pb

35
A2

a2l

r 3/2 S ny
21

nz
2

3 D , Ã@1, ~8!

where a5k0
2/(4p), Ã5v/(2m), and s1 ,s2 absorb the

orientation-independent terms. In the low-amplitude regim
the fluctuation spectra is only slightly influenced by she
flow. Equations~8! show that this regime is a perturbation
the equilibrium state withs̄5s0. When the frequency is
low, the typical time of the critical fluctuation development
much shorter thanġ21[(Av)21 and the flow simply trans-
lates fluctuations in space. At high frequencies, the lifeti
of the critical fluctuations exceeds the characteristic time
the flow. However, since the amplitude of deformation
small, fluctuations live in an averaged environment, sim
to the equilibrium one. Then the properties of the melt c
not depend on the frequency, which is shown by Eq.~8!. To
determine the stable orientation we follow Fredrickson a
note that the fluctuation integrals̄ is smaller for the paralle
orientation (ny51). The fluctuations are weaker in this d
rection and, therefore, we predict the parallel orientation
be stable in the low-amplitude regime.

For the finite-amplitude shear, the fluctuation integrals̄
can be evaluated with the help of Eq.~7! nearkx'0,

s̄~n!5c1~al!2/3S D*
Av D 1/3F12

b
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This regime no longer resembles the equilibrium state.
deed, in equilibrium@10# as well as under low-amplitude
shear the spinodal temperature, given byr (n)ua5050, is
suppressed by fluctuations tots52`. Unlikely, from Eq.
~9! ts(n)52s̄(n) asymptotically approaches zero asA
→`. We conclude that the flow strongly suppresses fluct
tions and restores the mean-field behavior. We also see
ts(nz).ts(ny) and, therefore, we expect the perpendicu
orientation to appear below the spinodal. Analysis of the
tential F shows that this orientation will persist for lowe
temperatures.

The transition from the parallel to perpendicular orien
tions can be located with the help of the method from R
@16#. We interpolates̄ in between theA→0 andA→` re-
gimes and solve the equationts(ny)5ts(nz) to obtain the
transition line in theA2v plane

Av'103mk0
2;N23, Ã!1, ~9!

whereN is a number of monomers in a polymer chain. F
high frequencies,s̄ is independent ofv and we predict the
transition line to be given byA5const. Recent experimenta
work @5# argues that at low frequencies the transition b
tween the orientations occurs atA;v21, while at higher
frequencies the transition line starts to level off. This is in
full agreement with our predictions.

Finally, we want to discuss the reappearance of the pa
lel orientation at high frequencies. This behavior cannot a
from the flow–fluctuation interaction discussed above. So
authors argue that the assumption of slow flow in Eq.~1! is
responsible for the failure of the theory to predict the para
orientation at high frequencies@6,17#. We, however, suppor
a different opinion. Balsaraet al. noticed @18# that in equi-
librium the walls of shear cell induce the parallel alignme
through the whole 0.5-mm sample, while Laureret al. ob-
served@19# that under shear there is always a near-surf
layer of the parallel lamellae independent of the bulk orie
tation. Therefore, we propose that the high-frequency pa
lel orientation of the lamellae is caused by interactions of
shear-cell walls with the melt. Fredrickson has shown@20#
that in equilibrium this interaction will lead to the paralle
alignment. Recently we discussed this effect for a ste
shear@16# and showed that in the presence of this interact
the stable orientation is given by the minimum ofF85F
22hadny,1 , whereh is proportional to the Flory-Huggins
strength of interaction between the walls and melt. Minim
zation of the modified potentialF8 gives for the'→i tran-
sition temperature

t152s̄~ny!2
@s̄~ny!2s̄~nz!#

4

8h2l~12b!
, ~10!
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with s̄(n) from Eq.~9!. If we fix temperature, the line of the
second transition will be again given byA;v21, Ã!1 and
A5const,Ã@1 with coefficients depending onh. This is in
a qualitative agreement with experiments@5#. A detailed
comparison is impossible because of the lack of experim
tal data. Our assumption can be verified by performing m
surement in various material shear cells.

We summarize our results in an orientational diagr
~Fig. 1!. The low-frequency regime resembles the stea
shear behavior. The corresponding expressions fors̄ @Eqs.
~8!, ~9!# are similar to those for the steady shear@8,9# with an

FIG. 1. Orientational diagram. In each region the dominat
effect is stated.
ro

J.

03180
n-
a-

y

effective shear rateġ5Av. The high-frequency part of the
diagram fundamentally differs from the steady shear. Wh
the frequency exceeds some critical value, which is of or
of the relaxation time for the critical fluctuations, the furth
increase of frequency does not change the behavior of
system. Therefore, in the high-frequency limits̄(n) together
with the spinodal temperaturets(n) appears to be indepen
dent ofv.

The first transition from the parallel to perpendicular o
entation corresponds to a change in character of the flo
fluctuation interaction. This change is associated with
strong suppression of fluctuation and a crossover from
fluctuation to mean-field type of behavior. Our estimate
the critical effective shear rate@Eq. ~9!# shows that@11–
13,16# ġc;N23. WhenN→`, the fluctuation region disap
pears@10# and ġc→0.

To explain the second transition we make use of rec
experiments@18,19# and argue that the high-frequency para
lel orientation is stabilized by the preferable interaction
the shear-cell walls with one of the components of the m
Validity of this hypothesis requires further experimen
studies.

At the end we want to emphasize that the presented
ture is applicable for any system~polymers, surfactants, mi
croemulsions! described by the Brazovskii Hamiltonian@Eq.
~2!#.
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Viñals, Macromolecules32, 8603~1999!; M.C. Cross and P.C.
Hohenberg, Rev. Mod. Phys.65, 851 ~1993!.

@16# A.N. Morozov, A.V. Zvelindovsky, and J.G.E.M. Fraaije, Phy
Rev. E64, 051803~2001!.

@17# G.H. Fredrickson and F.S. Bates, Annu. Rev. Mater. Sci.26,
501 ~1996!.

@18# N.P. Balsaraet al., Macromolecules27, 2566~1994!.
@19# J.H. Laurer, B.S. Pinheiro, D.L. Polis, and K.I. Winey, Macr

molecules32, 4999~1999!.
@20# G.H. Fredrickson, Macromolecules20, 2535~1987!.
3-3


